超声波传感器原理与应用知识-盛世时代

来源:盛世时代 时间:2017-05-06
    超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵和振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现象,并且在传播过程中有衰减。在空气中传播超声波,其频率较低,一般为几十KHZ,而在固体、液体中则频率可用得较高。在空气中衰减较快,而在液体及固体中传播,衰减较小,传播较远。利用超声波的特性,可做成各种超声传感器,配上不同的电路,制成各种超声测量仪器及装置,并在各个行业得到广泛应用。
    超声波应用有三种基本类型,透射型用于遥控器,防盗报警器、自动门、接近开关等;分离式反射型用于测距、液位或料位传感器;反射型用于材料探伤、测厚传感器等。
1、超声波传感器的基本原理
    超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。超声波传感器包括三个部分:超声换能器、处理单元和输出级。
     首先处理单元对超声换能器加以电压激励,其受激后以脉冲形式发出超声波,接着超声换能器转入接受状态(相当于一个麦克风),处理单元对接收到的超声波脉冲进行分析,判断收到的信号是不是所发出的超声波的回声。如果是,就测量超声波的行程时间,根据测量的时间换算为行程,除以2,即为反射超声波的物体距离。
    把超声波传感器安装在合适的位置,对准被测物变化方向发射超声波,就可测量物体表面与传感器的距离。
2、环境对超声波测量的影响
(1)空气温度的影响
    声波行程时间受气温的影响程度为0.17%/K。也就是说40℃时的声速相对于20℃时改变了+3.4%,因此测量距离也会改变约+3.4%。但如果选用的超声波传感器中有温度补偿功能,此影响可忽略不计。
(2)空气湿度的影响
    从干燥的空气到饱和湿度的空气中,声速最多增加2%。因此测量距离改变最大也只有2%。实际现场中,空气湿度变化不会如此大,此影响一般小于1%。
(3)空气压力的影响
    在一固定地点,正常情况下的气压波动为±5%,会造成声速波动约±0.6%。
(4)气流的影响
    当风速大于50km/h时,声波速度及方向的改变会大于3%。在现场使用中,只有靠近被测物表面的几厘米的气流有可能大于20km/h,且垂直于测量方向,故对测量结果的影响可忽略。
(5)油雾的影响
    只要防止油雾沉降在超声换能器的有效表面上,就可避免它的影响。主要应用超声波传感技术应用在生产实践的不同方面,而医学应用是其  超声波传感器
最主要的应用之一,下面以医学为例子说明超声波传感技术的应用。超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。因而推广容易,受到医务工作者和患者的欢迎。超声波诊断可以基于不同的医学原理,我们来看看其中有代表性的一种所谓的A型方法。这个方法是利用超声波的反射。当超声波在人体组织中传播遇到两层声阻抗不同的介质界面是,在该界面就产生反射回声。每遇到一个反射面时,回声在示波器的屏幕上显示出来,而两个界面的阻抗差值也决定了回声的振幅的高低。
    在工业方面,超声波的典型应用是对金属的无损探伤和超声波测厚两种。过去,许多技术因为无法探测到物体组织内部而受到阻碍,超声波传感技术的出现改变了这种状况。当然更多的超声波传感器是固定地安装在不同的装置上,“悄无声息”地探测人们所需要的信号。在未来的  超声波传感器
应用中,超声波将与信息技术、新材料技术结合起来,将出现更多的智能化、高灵敏度的超声波传感器。
超声波距离传感器技术应用
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波
检测广泛应用在工业、国防、生物医学等方面。
超声波距离传感器可以广泛应用在物位(液位)监测,机器人防撞,各种超声波接近开关,以及
防盗报警等相关领域,工作可靠,安装方便, 防水型,发射夹角较小,灵敏度高,方便与工业显示仪表
连接,也提供发射夹角较大的探头。
上一篇:干簧管的应用 -盛世时代 下一篇:LWGY型涡轮流量传感器-盛世时代

在线沟通